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Preconditioned Solvers for Incompressible Flow 

Abstract 

Finite element discretization of fully-coupled, incompressible flow 
problems with the classic mixed velocity-pressure interpolation pro- 
duces matrix systems that render the best and most robust iterative 
solvers and preconditioners ineffective. The indefinite nature of the 
discretized continuity equation is the root cause and is one reason for 
the advancement of pressure penalty formulations, least-squares pres- 
sure stabilization techniques, and pressure projection methods. These 
alternatives have served as admirable expedients and have enabled 
routine use of iterative matrix solution techniques; but all remain 
plagued by exceedingly slow convergence in the corresponding non- 
linear problem, lack of robustness, or limited range of accuracy. The 
purpose of this paper is to revisit matrix systems produced by this old 
mixed velocity-pressure formulation with two approaches: (1) deploy- 
ing well-established tools consisting of matrix system reordering, GM- 
RES, and ILU preconditioning on modern architectures with substan- 
tial distributed or shared memory, and (2) tuning the preconditioner 
by managing the condition number using knowledge of the physical 
causes leading to the large condition number. Results obtained thus 
far using these simple techniques are very encouraging when measured 
against the reliability (not efficiency) of a direct matrix solver. Here 
we demonstrate routine solution for an incompressible flow problem 
using the Galerkin finite element method, Newton-Raphson iteration, 
and the robust and accurate LBB element. We also critique via an his- 
torical survey the limitations of pressure-stabilization strategies and 
all other commonly used alternatives to the mixed formulation for 
acceleration of iterative solver convergence. The performance of the 
new iterative solver approaches on other classes of problems, includ- 
ing fluid-structural interaction, multi-mode viscoelasticity, and free 
surface flow is also demonstrated. 
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1 Introduction 

The quest for robust and efficient strategies to solve large, sparse matrix 
systems has been an active area of research for decades. Even today numer- 
ous advances in matrix solver technology constantly appear in the literature, 
most being based on preconditioned iterative methods. Relatively few ad- 
vances address direct methods, viz. methods based on Gaussian elimination, 
because of precipitous cost growth for large-bandwidth problems. Moreover, 
little attention has been given to the application of iterative solvers to ma- 
trices that are indefinite, i.e. those that possess unbounded large or negative 
eigenvalues. The future of implicit numerical techniques hinges on making it- 
erative matrix solvers generally applicable since they are the only economical 
means, and perhaps the only feasible means, of solving large problems. 

This paper addresses the current state and recent progress towards effi- 
cient, robust iterative matrix solution techniques for indefinite, nondiagonally 
dominant matrix systems. Matrices possessing these challenging traits arise 
in the mixed-interpolation implicit finite element discretization of the Navier- 
Stokes system of equations, the focus application in this paper. Peculiar to 
this equation set is the well-known continuity equation, which enforces in- 
compressibility of the fluid. This equation, discretized by whatever means, 
has challenged numerical methods researchers for years and has dictated the 
course of development of efficient solution strategies. In all cases alternatives 
to the mixed-interpolation, fully-coupled approach have been developed with 
some compromise. Indeed our effort to push into production alternative for- 
mulations that can readily exploit the power of iterative methods has suffered 
from slower convergence rates, lower accuracy and, most importantly, a lack 
of consistency in convergence behavior from problem to problem. The last 
compromise is particularly noteworthy as it often presents the greatest bar- 
rier to progress of computer-aided engineering analysis. 

The classical mixed velocity-pressure interpolation Galerkin finite element 
method (GFEM), often referred to as “mixed v-p form,” was the workhorse 
of incompressible flow solvers in the 1970s and 1980s and has proved highly 
successful for two-dimensional and small three-dimensional problems, offer- 
ing high order of accuracy and strong convergence rates (Reddy and Gartling 
[47]). The h 11 a mark of this approach is the discretization of the continu- 
ity equation in a manner adherent to certain mathematical constraints (see 
Section 2), and the ability to simultaneously solve the equation with the 
discretized momentum equations in either a Picard or Newton-Raphson it- 
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erative scheme. The discretized continuity equation is the known cause of 
“indefiniteness” in the resulting Jacobian matrix, leading to unbounded large 
and negative eigenvalues. Despite this poor matrix conditioning, most two- 
dimensional problems with small bandwidth are amenable to efficient solution 
with optimized variations of classical Gaussian elimination. For example, the 
frontal solver (Hood [33]) and skyline method (Hasbani and Engelman [31]) 
allow for memory-efficient solution and in fact are still used quite often to- 
day. But even tremendous technological advances in computer processor 
speed and random access memory capacity will never make direct methods 
a viable alternative for large three-dimensional problems. This is one reason 
why many researchers have abandoned the traditional mixed-interpolation 
approach in favor of alternatives that- allow the ready use of iterative solvers. 
These alternative formulations, including penalty methods (e.g. Zienkiewicz 
[64]), pressure stabilization methods (Hughes et al. [36]) and pressure pro- 
jection methods (Haroutunian et al. [30]), bring “definiteness” to the matrix 
system. 

This paper revisits the fully-coupled, mixed-interpolation approach with 
the goal of effectively applying iterative solver techniques to the resulting 
matrix system. Preconditioning the matrix system is the primary tactic 
pursued in this work. Towards this goal we will take two approaches: (1) 
deploying well-established tools consisting of matrix system reordering, GM- 
RES [52], and ILU preconditioning on modern architectures with substantial 
distributed or shared memory, and (2) tuning the preconditioner with diago- 
nal perturbations using knowledge of the physical causes leading to the large 
condition number. 

This paper is organized as follows: the mathematical description of three 
prototypical problems is given in Section 2.1. All three problems involve in- 
compressible flow but are distinguished by additional complexities, e.g. capil- 
lary free-surfaces, fluid-structural interactions, complex and time-dependent 
material behavior, and multiple material/heterogeneous physics. This sec- 
tion also presents the basic essentials of the Galerkin/finite element method 
(GFEM) of discretization and discusses how coupling this approach with 
Newton-Raphson nonlinear iteration affects the conditioning of the matrix 
system that results. An historical review of the various alternate formulations 
taken to solve these systems will be covered in Section 3. Section 4 reviews 
the generalized minimum residual (GMRES) iterative solver technique and 
the concept of preconditioning, focusing mainly on our new preconditioning 
strategy. Application and performance of the iterative solvers and precondi- 
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sources (Huerta and Liu [35]). Equations governing the mesh position and/or 
velocity as required by ALE formulations, are discussed below. Note that we 
have allowed for transient flow, although some of our examples employ the 
steady-flow equations, e.g. Eq. 2 without the temporal derivatives. 

The Cauchy stress tensor T for a Newtonian liquid is given by 

T = -pI + 2pD, (3) 

where p is the fluid pressure, I is the identity tensor, p is the fluid viscosity 
and 

D = ; [Vv + (Vv)‘] (4) 
is the rate-of-strain tensor. For Newtonian fluids this constitutive equation 
is usually substituted directly into the momentum balance Eq. 2, but for 
viscoelastic constitutive equations it is expedient to solve the constitutive 
equation separately with a mixed method, as discussed below. 

Typical boundary conditions for the fluid momentum equations can be ex- 
pressed in terms of surface normal n and surface tangent t vectors. The most 
common boundary conditions are those that prescribe no-slip/impenetrability, 
applied as usual at fluid-solid surfaces, 

Il-V=?ln and t-v=vt . (5) 

vu, and vt are the normal and tangential velocity respectively. The natural 
boundary conditions or zero stress condition, i.e., 

nn:T=O together with t*v=o (6) 

is usually applied at fully developed outflow/inflow boundaries in lieu of 
a specified flow rate. For viscoelatic flow problems, however, an outflow 
velocity boundary condition must also be specified. Inflow/outflow velocity 
conditions of the form 

vlr = g(x, Y, 4 (7) 

are used when the velocity field g(x, y, Z) is prescribed along the boundary 
r. 

It is noteworthy in this system of equations that the unknown, dependent 
variables include all components of the velocity vector and the pressure. 
The continuity equation (Eq. 1) is generally responsible for the pressure, yet 
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pressure is absent from this equation. The ramifications of this peculiar trait 
with regard to the theme of this paper are discussed in section 3. 

For moving-mesh problems we solve Eqs. 1 and 2 together with the equa- 
tions governing mesh motion, or position. Here we employ the differential- 
equation-based approach described by Sackinger et al. [53] in which the static 
momentum balance of a neo-Hookean nonlinear elastic material is solved for 
the mesh displacement components. This balance takes on the following form 
for an inertialess, body-force-free solid material: 

v-r=0 . (8) 

The stress tensor 7 is related to the deformation by an appropriate con- 
stitutive relation. For purposes of this discussion, we will use the following 
nonlinear-elastic, neo-Hookean constitutive form, 

‘I- = -PI + 2GE, (9) 

where P is the pressure in the solid, I is the identity tensor, G is the shear 
modulus and E, is the deviatoric portion of the strain tensor defined by the 
Lagrangian deformation gradient tensor F,, viz., 

E,=;(FT,F,-I) . 

F, is defined as 

where x, is the vector of deformed mesh coordinates. x, is related to the 
stress-free state coordinates X and the local displacements d by x, = X-t d. 
We have written the solid constitutive equation in an incompressible form, 
which introduces a solid pressure. Nothing significant in this formulation 
changes when the compressible form is invoked, except that there is no longer 
any need to supplement the system with an incompressibility constraint in 
the solid. In the examples below we use the compressible form in regions of 
arbitrary mesh motion in the fluid phase (viz., independent of the material) 
and the incompressible form in our computational Lagrangian solid phase 
regions. 

When the solid phase is incompressible we must solve an additional con- 
tinuity equation for the pressure in the solid: 
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detF,=l . (12) 
It is a simple matter to show that this continuity equation is kinematically 
and thus mathematically equivalent to the fluid-phase continuity equation 
(Eq. 1) [2] (see Marsden and Hughes [43]). Moreover, as in the solenoidal 
velocity constraint for incompressible fluids, we again have a situation where 
the pressure for which this equation accounts is not actually present. This 
again has clear implications to the numerical methods employed, cf. Sec- 
tion 3. 

In ALE regions of the mesh, displacements emanate from free-surface 
motion, which in turn are governed by so-called distinguished boundary con- 
ditions. These boundary conditions connect the grid motion to the prob- 
lem dynamics or kinematics and are applied to the mesh-motion/position 
equations. One such condition prevalent in most free and moving boundary 
problems is the kinematic boundary condition: 

n. (V - vs) = 0, (13) 

written here for a true material boundary across which we have no significant 
transfer of mass (e.g. by evaporation, condensation, etc.). 

Applying Eq. 13 to the mesh-motion equations is tantamount to forcing 
the free surface to be a material surface, thus defining the extent of the ma- 
terial and mesh. Note that even though this condition contains geometrical 
information embodied in the normal vector n and the mesh velocity vsr the 
dominant variable contribution is derived from the fluid velocity. Because 
this is a boundary condition on mesh displacement or position, the discretized 
condition can generate weak contributions on and near the diagonal of the 
matrix, especially if v, is small and the surface curvature is small. Similar 
effects from other types of distinguishing condition can be even more detri- 
mental to the matrix system. In phase-change problems it is often desirable 
to force the mesh to conform with an isotherm or isoconcentration surface. 
Such conditions contain absolutely no geometric information and hence pro- 
duce zeros on the diagonal of the resulting matrix system when applied to 
distinguish mesh motion along a boundary (Sackinger et al. [53]). Clearly, in 
addition to the incompressibility constraints, boundary conditions can also 
lead to poor matrix conditioning, as our free surface example in Section 5 
reveals. 

October 2001 Page 6 



Preconditioned Solvers for Incompressible Flow 

We consider two types of moving boundaries, one between two fluids, usu- 
ally a liquid and a gas, and the second between a fluid and a solid. Both types 
define the extent of a material, and hence are material surfaces. Accordingly, 
Eq. 13 is used as a boundary condition on the mesh motion/position. The 
forces along the boundary must balance because the interfaces are presumed 
to have no mass; they are mathematical lines or surfaces in space. For liq- 
uid/gas surfaces characterized by significant surface tension forces, we enforce 
a balance of viscous stress and capillary pressure, 

n~T=n~T,,,+2’Hon (14) 

as a boundary condition on fluid momentum. Here 2% is the mean curvature 
of the interface and 0 is the surface tension. At fluid-solid interfaces sans 
shell or curvature-dependent forces the condition is similar: 

n . Tsolid = n * Tliquid . (15) 
In a later example problem we augment the fluid continuity and momen- 

tum relation with an equation that accounts for viscoelastic fluid behavior. 
Correspondingly we consider a stress tensor of the form 

T=-pI+r+2pD, (16) 

where the extra stress tensor 7 is composed of k modes, 

m 
I-= c Tk . (17) 

k 

Along with Eqs. 1 and 2 we solve a multimode Giesekus model for the stress 
constitutive equation 

ak Ak 
---rk . ?-k + ?-k + $k = 2qkD 

qk 
(18) 

where $k is the upper convected derivative of the extra stress tensor, XI, is 
a relaxation time, ok is a mobility factor, and rjk is the polymer viscosity. 
In addition to the stress equation, our formulation requires an equation for 
continuous velocity gradient, G, be solved 

G=Vv. (19) 
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The application of GFEM to the foregoing equations can be summarized 
as follows: (1) the physical domain is broken up into elements, (2) a set of 
finite element basis functions is defined for each element so that functional 
representations of the independent variables can be constructed (these basis 
functions are nearly orthogonal, linearly independent polynomials of low- 
order), and (3) each differential equation is written as a residual, i.e., all 
terms are put on one side, multiplied by the appropriate basis function in each 
element and integrated over the entire domain. The resulting expressions are 
actually termed weighted residuals, denoted here as R. Details for general 
applications of this scheme are fully described elsewhere [47]. 

Central to this paper is treatment of the continuity equation. For in- 
compressible flows this equation is used to account for the unknown pressure 
in the momentum equations. A functional representation of that pressure 
and the velocity components are constructed with appropriately chosen ba- 
sis functions, $J and q5 viz. 

P = g- @iPi 

Ne 

and v= D ivi (20) 
i i 

where Ne are the element functional nodes. Here $i and 4i are suitably 
chosen low-order polynomials. The standard Galerkin approach necessitates 
an interpolation of both fields satisfying the classical inf - sup or Babuska- 
Brezzi stability condition [6]. This compatibility condition is known as the 
LBB-condition. In this work & are chosen to be lower order than di. We 
typically choose quadratic functions (biquadratic for two dimensions and tri- 
quadratic for three dimensions) for & and linear polynomials for & This is 
denoted hereafter as the Q2Ql element type. We also on occasion will use lin- 
ear basis functions for velocity and piecewise constant functions for pressure, 
denoted hereafter as QlPO element types. The two LBB-compliant element 
types used in this work are diagrammed in Figure 1 for both two-dimensional 
and three-dimensional flow (cf. [6]). With regard to the continuity equation, 
we apply a weighting function identical to the basis function used to represent 
the pressure, as required by the Galerkin approach: 

R,= 
s 

T/J (V-v) dV (21) 
D 

For purposes of this discussion we will chose the same, low-order polynomial 
representation for the displacements, viscoelastic stress and velocity gradient 
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0 Pressure Node l Velocity/Displacement Node 

Figure 1: Typical FEM velocity/displacement-pressure mixed elements. 

tensor. However, for the stress, we employ discontinuous versions of the low 
order polynomials. 

d = 5 4idi 
Ne 

rk = ID $-(k) i G = &Gi . (22) 
i=l i=l i=l 

In accordance with Galerkin’s method, we form weighted residuals R of 
the fluid momentum equation (Eq. 2), the solid momentum equation Eq. ( 8) 
and velocity gradient equation (Eq. 18) with the same functions $i and dis- 
continuous 4: for the viscoelastic stress equation. Because we use the same 
level of basis function for displacements and mesh coordinates, the associated 
integration is facilitated by an isoparametric mapping. 

The foregoing operations yield a residual vector of nonlinear algebraic 
equations that we denote as 

RT(v,+,p,4P,r) = [Rr~,R,,R,,,Rdcl~=,~,R~lT = OT . (23) 

where OT is a column vector of zeros. For purpose of discussion we have 
broken the residual equation set into several relevant parts: Rf, refers to 
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the residual vector of the fluid momentum equations, R, the fluid continuity 
equation, R, the solid momentum equations; Rdc the mesh distinguishing 
conditions, R, the mesh/solid continuity equation, R the viscoelastic stress 
equations, and RG is the velocity gradient equation. With one exception 
these residual elements represent the basic classes of physics. We single 
out distinguishing boundary conditions on mesh motion, Rdc, as they are 
exemplary of the poor conditioning that can result from implicitly defined 
boundary conditions. Several remarks are relevant here, as they pertain to 
the matrix solution algorithms to follow: 

l In practice this system of equations is not partitioned in the order 
shown unless forced by the presence of different material regions in 
which different mechanics equations are being solved. This represen- 
tation is put forth for convenience. For computational expedience the 
bandwidth of the matrix is minimized by alternating the residuals of 
the different physics classes at each node. 

l No restrictions are placed on which elements are active in various re- 
gions of the domain. Indeed we can have fluid materials with viscoelas- 
tic stresses abutting solid materials undergoing deformation. In this 
case the collated representation is more appropriate as those associ- 
ated with each material block are typically contiguous in storage. 

l This system of nonlinear equations can be large, (of the order of 10,000 
to 100,000 unknowns in this work) and representative of a two-dimensional 
or three-dimensional problem. 

A solution of the discretized equations is obtained by first linearizing 
the residuals, if necessary, by means of Newton’s method or a quasi-Newton 
variant. Linearization by Newton’s method leads to the solution of the matrix 
equation: 

J(u)Au = -R(u) (24) 

where J(u) is the so-called Jacobian matrix, au is the vector of nodal de- 
gree of freedom updates, R(u,) is the residual vector and u is the vector of 
unknown nodal degrees of freedom denoted as u = [ v , p , d , P , r 1’. The 
basic collated structure of J(u) is shown in Figure 2. This matrix represents 
the sensitivity of the residual vector with respect to all degrees of freedom in 
the problem. 
The characteristics of this matrix that motivate this work are the following: 
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V kuid d foblid ’ G Misc. 

Solid 
Momentum 0 j 0 ~ Jsm,d ~ Jsm,P ~ o ~ o 

Mesh DC’s ’ Jdc,v I &p j J,jc,d j 0 IO : 0 
. . . . . . ..--------I ,--------~ r--------~--~ J 

Solid 
Continuity 0 ~ 0 ; Jsc,d i 0 ~ 0 ~ 0 

viscoelastic 

Stress 
J ~ o 

7.v :JTd ~ o ’ i JT,T ~ 4,~ 

Velocity 
Gradient 

J j 0 ~ 
6~; 

0 ~ 0 ~ 0 ~ JG,c 

.~~~~~.~~~~~~...~........L....._.~,........~........ 
Misc. L j j / / j 

Figure 2: FEM J Matrix. 

1) It is generally large and sparse. Although solvable by direct meth- 
ods, its bandwidth typically prohibits such approaches for three-dimensional 
problems. 

2) All blocks in J are generally nonsymmetric. The mere presence of 
nonlinear advective terms makes Jfm,v and J,,, nonsymmetric; the mixed 
method and Galerkin’s approach even makes J,,, nonsymmetric. Perhaps 
most detrimental to the conditioning of J, outside the zero block along the 
diagonal, are that dispersed throughout are boundary condition equations, 
like the distinguishing conditions that give rise to further asymmetries. 

3) Jw = qm,, that arise from the continuity equation and the pressure 
sensitivity of the fluid momentum equations are related. But, because the 
continuity equation for the fluid has no contribution from the hydrodynamic 
pressure, a conspicuous zero matrix block results on the diagonal. This 
trait alone is the single-most reason why this matrix system has challenged 
linear-algebraists for years. It leads to matrix indefiniteness, or unbounded 
eigenvalues of the systems. In other words, any LDTL decomposition of the 
composite matrix will require pivoting of some sort (Golub and Van Loan 

WI). 
4) Jdc,d, or the sensitivity of the mesh motion distinguishing conditions 
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Navier-Stokes equations, but also look at viscoelastic equations. To date 
we know of no work involving fluid-structural interactions in the framework 
it is addressed here. It is noteworthy that the historical factors motivat- 
ing the four expedients presented in this section are not solely related to 
the heretofore lackluster and unreliable performance of iterative methods. 
Other factors have also played a role, including computer memory limita- 
tions, floating-point operation count reduction, wider range of convergence 
of the nonlinear iteration scheme, time-stepping flexibility, and basic ease of 
programming. 

3.1 Pseudo compressibility formulation 

The first tactic we discuss is probably the oldest and simplest to implement. 
Chorin [lo] introduced a pseudo-compressibility approach to solving incom- 
pressible flow problems. The idea is to apportion the time-derivative of the 
density to the solenoidal constraint, thereby allowing for some small measure 
of compressibility, 

$+v v=o 
dt . . 

Here E is an adjustable parameter. If the density is taken as a mild function of 
pressure, discretization of this equation leads to contributions on the diagonal 
of J, which is otherwise zero for the basic v - p form advocated here (cf. 
Figure 2). 

The addition of this term offers a dual benefit. First, a time derivative 
now appears in the continuity equation residual, whereas before it was an 
algebraic constraint. This allows the equation to be advanced with time in- 
tegration techniques not subject to the limitations of a differential/algebraic 
system (DAE, see Gresho [28]). S econd, this approach also contributes to the 
diagonal and hence lowers the condition number of J. These benefits come 
at a heavy price, however, especially for low-speed flows. Accuracy degrada- 
tion of the velocity and pressure fields is enormous, especially when E is large 
enough to lend significant benefit to iterative solver performance. Moreover, 
near boundaries where no allowance is made for this compressibility effect, 
significant degradation to mass conservation becomes evident. Finally, this 
technique does not offer any advantage to solving the steady equations, as it 
rests on advancing the continuity equation in a time-dependent manner. 
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3.2 Pressure Penalty Formulation 

One can circumvent the steady-problem encumbrance by deploying a so- 
called pressure penalty approach. The penalty formulation of the continuity 
equation is 

v.v+;=o (26) 

Here X is the penalty parameter: it must be assigned a large value in order 
to approximate incompressibility. This equation actually describes a field of 
distributed mass source V. v and sink p/X in which the local pressure is pro- 
portional to the rate of annihilation of mass (and locally negative pressure is 
proportional to the rate of mass creation). Despite these deleterious physical 
traits, when solved with discontinuous linear basis functions for pressure this 
equation leads to a penalty method that can yield solutions to viscous flows 
virtually identical to those from the direct mixed interpolation approach ad- 
vocated in this work (cf. Khesghi and Luskin [39]). 

Penalty approaches such as this one were developed early on (e.g. Zienkiewicz 
[64]) for a variety of reasons, including obvious benefits of ease of program- 
ming and reduced problem size. Its main attribute is that it provides a way 
to decouple the pressure calculation from the velocity (note that Eq. 26 can 
be used to eliminate the pressure in Eq. 2). Most pertinent to this paper, 
however, is the work of Engleman and Hasbani [21] who recognized that Eq. 1 
was the root cause of poor iterative solver convergence in their quest for more 
efficient matrix solvers for large problems. As one attempt to circumvent this 
problem they turned to a pressure penalty formulation, which clearly results 
in a finite contribution on the diagonal of the matrix equations corresponding 
to the continuity. Although they found that iterative solver performance im- 
proved dramatically, the tradeoff between large condition numbers at large X 
and large inaccuracies at smaller X could not be managed so as to yield a re- 
liable and robust algorithm. To realize maximum solver performance benefit 
they concluded that too much accuracy had to be compromised. An interest- 
ing conclusion of the work of Engleman and Hasbani is motivating here: they 
declared that the only viable solution strategy for arbitrarily large problems 
was to segregate the system. In fact, many researchers have been led to this 
conclusion; any way to decouple the hydrodynamic pressure from the system 
allows greater flexibility in solution strategies and allows for the generation 
of sub-matrices that are smaller and contain entries on the diagonal and 
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hence are more amenable to preconditioned iterative solution techniques (see 
Gresho [28]) . 

3.3 Segregated Methods 

Note the matrix system symbolically represented by the set in the previous 
section (Figure 2) is not immediately amenable to a segregated approach 
because some blocks do not contain diagonal components, viz. those as- 
sociated with the continuity equation. The basic idea of segregated algo- 
rithms is to decouple the pressure calculation from the velocity calculation 
by taking the divergence of the vector momentum equation and applying 
some clever insights regarding incompressible flow. Early on the motivation 
for this approach was largely two-fold: to mitigate memory requirements of 
fully-coupled algorithms and to enable semi-implicit time integration. 

Pressure/velocity segregation methods have been reviewed by several re- 
searchers in the context of the finite element method; most notable are the 
papers by Gresho [28] and Haroutunian et al. [30]. The origins of pres- 
sure/velocity decoupling harks back to several key developments in compu- 
tational fluid dynamics (CFD) using finite difference and finite volume dis- 
cretization. In fact, many of the modern algorithms have been derived from 
the voluminous experience base accumulated by CFD practitioners contend- 
ing with limited memory capacity in the 1970s and 1980s. Haroutunian et al. 
[30] review the progression of techniques from early on in the finite volume 
and finite difference arena and have concluded that the SIMPLE algorithm 
and its variants (Patankar [44]) h ave emerged as the most reliable and ro- 
bust approach. Haroutunian et al. then proposed finite element counterpart 
to the SIMPLE algorithm applicable to the problem at hand, with special 
attention given to solving steady-state problems without false-transient time 
integration. 

Basically all current segregated algorithm variants are distinguished by 
the way in which the pressure is decoupled and projected from one time step 
to the next. Some approaches lead to a vorticity/velocity equation while 
others lead to a stream function-vorticity equation (cf. Gresho [ZS]). In 
every case one is faced with solving the pressure-Poisson equation of the 
form 

V~VP=V-f-V+~Vu) (27) 

obtained by taking the divergence of Eq. (2) and applying Eq. (1). Haroutu- 
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nian et al. [30]) proposed three consistent finite element counterparts to the 
SIMPLE and SIMPLER algorithm. To further reduce the size of the sub- 
matrix systems, each individual component of the momentum equations were 
solved separately and successively by iterative techniques. Overall at each 
Newton iteration or Picard iteration they solved four matrix subsystems, one 
for each of three velocity components and one for the pressure. 

Interestingly, the most challenging matrix system to solve happens to be 
one arising from the discretization of the pressure equation (Eq. 27) - here 
the right-hand-side is lagged from the last iteration so that this equation is 
solved solely for the pressure. The resulting matrix, despite being symmetric, 
is actually very poorly conditioned due to poor scaling. Nonetheless, these 
challenging matrix systems can be readily solved by modern iterative solvers 
and reordering/preconditioner strategies, and the success of this algorithm 
over the last decade has been enormous. As a further relevant example to 
this work see Fortin and Fortin [23] who applied a segregated approach to a 
viscoelastic flow problem. Problems of substantial size (greater than 1 million 
unknowns) have been solved routinely and the algorithm has been exploited 
for its robustness and generality in a variety of widely used commercial codes. 

In our view this approach is still a compromise to the the favorable con- 
vergence properties of a fully-coupled technique advocated here. Conver- 
gence to steady solutions or at successive time steps is linear at best and 
sometimes even asymptotic, making for sometimes large number of required 
segregation iterations (albeit fast iterations). Moreover, the method intro- 
duces several relaxation parameters that must be tuned to the application. If 
one chooses alternatives to the primitive variable formulation then boundary 
conditions on velocity become difficult to apply accurately (cf. the vorticity 
and stream-function approaches discussed by Gresho [ZS]). Finally, codes 
centered around this algorithm are more complex in structure, as they still 
contain the intricacies of matrix solution services but involve more than one 
data structure (for the mixed interpolation) and more inner and outer itera- 
tion loops. These and other encumbrances has motivated the current authors 
to employ the same full-Newton, primitive variable, coupled approach that 
has proved useful for so many two-dimensional applications, in three dimen- 
sions. 
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means that nonzero contributions will result on the diagonal of the Jacobian 
matrix. This term can be shown to converge with mesh more slowly than 
the first term, thereby undermining the accuracy (see results below). More- 
over, we note that a higher-order derivative of the velocity field is present, 
viz. (V . (Vu)) arising from V. T, thereby necessitating a higher-order basis 
function to evaluate. Most chose to ignore this term in practice (cf. Hughes 
and Franca [37], etc), even though it was recognized by Droux and Hughes 
[17] to be essential to the convergence and accuracy of the method at low 
Reynolds numbers. Droux and Hughes devised boundary integrals that os- 
tensibly shore up the accuracy and convergence for this class of problems. 

Use of PSPG schemes and related element-basis-function manipulation 
techniques are now quite prevalent. Edis and Aslan [18] and Codina and 
Blasco [14] have used a variant that gives an LBB compliant &l&l element 
in the context of fractional-step pressure projection methods. Their approach 
involves a heightened number of velocity degrees of freedom in the element. 
Howard et al. [34] explored the benefits of PSPG with respect to iterative 
solver performance, making many comparisons to direct methods for a small 
class of incompressible flow problems. Tezduyar and his research group have 
performed simulations of impressive size using this unique space-time finite 
element formulation with stabilized &l&l elements (cf. Tezduyar et al. [SS]). 

The current authors have implemented this scheme as stated with the 
purpose of improving the performance of iterative solvers/preconditioners on 
our fully-coupled formulations - it is perhaps noteworthy that Hughes et al. 
[36] cited this as an added benefit. Although this goal was realized, due 
mainly to the population of the diagonal components of J, we have found 
several disconcerting byproducts of this approach that precludes its general 
usage. Two of the test problems in Section 5 were designed to elucidate the 
poor solution quality that can result with the PSPG approach as applied to 
low Reynolds number confined flow. In another test problem with viscoelastic 
flow we found that the PSPG approach resulted in unacceptable convergence 
of the matrix solver. 

3.5 Fully-coupled, mixed LBB 

Strong precedence to this work are a handful of published attempts to accom- 
plish what we intend to here: successfully apply iterative solvers to the LBB- 
compliant Galerkin finite element formulations of the Navier-Stokes equa- 
tions. Based on these attempts it has become clear that preconditioning 
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matrix systems is far more effective than choosing a different iterative tech- 
nique. Caballero and Seider [8] cite more than 80 papers addressing this 
subject prior to 1999, in the general case. For incompressible flow problems, 
they found the most popular preconditioners are based on ILU/triangular 
factorization, consistent with our approach here. 

Einset and Jensen [19] with a Q2Ql element and a fully-coupled New- 
ton’s method solved three-dimensional gas flows in Chemical Vapor Deposi- 
tion reactors using GMRES and a specialized preconditioner that was highly 
dependent on the mesh structure. They obtained acceptable convergence be- 
havior, but only after invoking equation reordering and pivoting with their 
incomplete LU preconditioner; this maneuver has strong precedence here. 
Perhaps most telling is that their largest problems size was 15000 unknowns 
in three dimensions, and that required the then state-of-the-art CRAY YMP 
supercomputer. 

Salinger et al. [54], with a similar mixed finite element method, had 
some success by simply modifying the matrix preconditioner such that no 
zeros occur on the diagonals, viz. D = Jii + E where E is chosen to avoid 
dividing by zero on the continuity equations. This approach, albeit simple, 
seems to work for their low-speed transient gas flow and is advocated here 
in our block class of preconditioners. 

As previously mentioned, Engelman and Hasbani [21] attempted to ap- 
ply GMRES with a variety of preconditioners to the fully-coupled system, 
but with the pressure penalty on the continuity equation. Their work, al- 
though resulting in the abandonment of the approach advocated here, was 
comprehensive and outward looking. For instance they make it clear that if 
success were to be realized, one should really use inexact Newton methods to 
avoid unnecessary linear solve iterations at early Newton steps (see Shadid 
et al. [55]). They also note that since indefinite systems contain zero piv- 
ots, the incomplete factorization will require some sort of pivoting. Finally, 
they suggest a &R-algorithm-based preconditioner (cf. Saad [48]), which is 
similar to the approach we take up below. An interesting feature of their 
work is that they seem to have tried all of the best available preconditioning 
techniques. One reason we believe they were unsuccessful is explained in the 
conclusions of this paper. 

Many have made attempts at applying iterative solvers to flows with 
complex rheological behavior, perhaps because these problems have a rel- 
atively greater computational expense than their Newtonian counterpart 
due to much larger bandwidths. Carey et al. [9] with some success ap- 
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plied conjugate-gradient-squared algorithms to incompressible flow of shear- 
thinning liquids. They used the classic finite element mixed formulation and 
pressure penalty formulation with considerable success for a two-dimensional 
lid-driven cavity flow. They also explored the bi-conjugate gradient method 
and GMRES. Most noteworthy is that they used a direct factorization of 
the equivalent Stokes problem (i.e., Re = 0) as a preconditioner -obviously 
an impractical tactic for three-dimensional problems. What sets precedence 
here though is that they actually used a preconditioner that reordered and 
processed the incompressibility constraints via ILU with pivoting. They also 
observed a rapid degradation in convergence behavior as the shear-thinning 
became more severe. 

Similar to our interests, Baaijens [4] advocated the Taylor-Hood Q2Ql 
element type in his work on incompressible flow of viscoelastic fluids. He 
also employed a fully-coupled Newton-Raphson based approach. His pre- 
conditioning strategy amounts to condensing out the discretized stress and 
velocity gradient equations, via Schur-complement, and using that as a pre- 
conditioning matrix. It is noteworthy that Baaijens advocated the PSPG- 
related approach in 1995, but is now looking at non-PSPG schemes, which 
is perhaps related to the limitation of the former. 

Prior to Baaijens’s work, Tsai et al. [59] compared GMRES, BiCGStab [63], 
and direct frontal solver for fully-coupled incompressible mixed formulation 
together with a split stress equation for an Oldroyd-B fluid. His calculations 
were two-dimensional and of moderate problem size. His preconditioning 
strategy was basically ILU using frontal elimination algorithm with pivot- 
ing. The moderate problem sizes in two dimensions and the lack of follow-on 
efforts indicate that Tsai and coworkers were limited by memory availability. 

Chapman et al. [l] recently have taken a general approach of applying 
a progression of ILU-based preconditioning strategies. Their target problem 
class includes matrices arising from the mixed v-p formulation of the in- 
compressible Navier-Stokes equations, much like those targeted here. They 
solved matrix systems created by FIDAP [38] with considerable success, but 
concluded that quite high levels of fill-in were required. Strangely they spoke 
little of the physical and mathematical origins of their target system, exam- 
ined only two-dimensional problems, and never addressed the limitations of 
ILU-based preconditioning with problem size growth. In fact, we have found 
that the fill-in levels they employed for two-dimensional problems are strictly 
prohibitive in three dimensions, even on modern large-memory computers. 
They tout block preconditioners but do not test them on indefinite matrices. 
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Other example matrices included some from Harwell-Boeing applications in 
oil-reservoir modeling and related flows, and BARTH matrices from 2D tur- 
bulent flow over airfoils, with a formulation that results in fully-populated 
matrix diagonals. The only relevant applications here are their tests with 
the FIDAP matrices and we find their conclusion to be consistent with ours, 
that ILU with high fill-levels is often required to solve this class of matrices. 

Zhang [65] also addresses a host of matrix systems arising from applica- 
tions in computational fluid mechanics. His goal was to determine exper- 
imentally the state of applying BILU preconditioners to general classes of 
problems. Extensions to the basic block approach that he advocates include 
singular value decomposition on the block level, with singular-value pertur- 
bation in the case of nearly-singular preconditioning factors, much the same 
as our approach. His tests are extensive and in all cases he was success- 
ful at getting this class of preconditioners to work, but not without effort. 
He too used matrices generated by the fluid-mechanics finite element code 
FIDAP [20] and admitted these were the most challenging due to their in- 
definite nature. Unfortunately little information is given on the prospects of 
BILU on large three-dimensional problems and no stringent tests on matrices 
arising from similar formulations, but extended non-Newtonian liquids and 
fluid-structural interaction problems. 

Beyond preconditioning, many practitioners simply resort to transient 
analysis to overcome poor performance of iterative solvers (e.g. Tezduyar et 
al. [58], Strigberger et al. [57]); the idea is to take advantage of iterative 
solvers that thrive on a good initial guess - which transient analysis with small 
enough time increment delivers at each time step. Furthermore, the smaller 
the time step the more diagonally dominant the matrix system, because the 
time derivatives occur on or near the diagonals. Unfortunately transient 
analysis is inefficient for a broad class of problems that are steady in nature, 
and hence integrating in time is not the end-all cure. 

A final approach worthy of mention are those techniques that seek to 
avoid forming the matrix altogether, thereby circumventing the “zero-on-the- 
diagonal” problem with the iterative solver. Most iterative solvers require 
a matrix vector multiplication, viz. Jv. In turn this product can be com- 
puted with numerical differencing as R(u) - R(u+ W)/E where v is a general 
Krylov vector (see Section 4) and so the method never requires the matrix 
itself. Several discovered then that Newton’s method and the iterative solver 
can then be woven together, such that the matrix is never formed (Brown and 
Saad [7]); these techniques are known as Newton-Krylov methods. Although 
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offering many advantages over a matrix-based approach in terms of storage 
requirements, they are encumbered by poor performance on fully coupled 
Navier-Stokes systems; the only way to improve matters is by precondition- 
ing, which demands a matrix. Several applications to Navier-Stokes systems 
with additional coupled physics have appeared in the literature, mostly in 
the context of finite difference or finite volume formulations and hence are 
not subject to the same LBB constraints that limit finite element forms (cf. 
Knoll, Kothe and Lally [40]). A few that involve the finite element method, 
like work by Fortin and Zine [24] who used a Newton-Krylov approach on the 
velocity-pressure flow calculation of a viscoelastic fluid. They again deployed 
some level of segregation, however. Although promising, the matrix-free ap- 
proach suffers from the same ills as the method advocated here and requires 
similar sophistication in preconditioning. In fact, Newton-Krylov schemes 
are usually deployed as a part of a segregated algorithm for most flow prob- 
lems (cf. Knoll et al. [40]) and h ave only recently been applied to the fully 
coupled system. It remains to be seen what additional advantages they will 
offer to the approach advocated here outside the obvious storage savings. 

4 Matrix Solvers 

Preconditioned iterative methods have long been popular for solving linear 
equations that arise in computational fluid dynamics. Early methods in- 
clude line relaxation schemes for structured grid problems and Gauss-Seidel 
iterations. Interestingly, both of these classes of methods are still in use 
today, often as preconditioners for some iterative accelerators such as conju- 
gate gradient methods. As mentioned in Section 3, Haroutunian, Engelman 
and Hasbani [30] showed that the use of preconditioned conjugate gradient 
methods, e.g., the symmetric Gauss-Seidel preconditioned conjugate residual 
method, provide an attractive approach to solving the linear systems that 
come from segregated finite element approaches. Generally, these methods 
provide the best overall combination of robustness, ease of use (minimal tun- 
ing parameters) and efficient computation and memory use. Typically the 
nonsymmetric systems of equations, where updates are computed for the ve- 
locity components, and perhaps other non-pressure variables, require minimal 
preconditioning, e.g., diagonal scaling, and one of the many short term recur- 
rence iterative schemes such as Bi-CGSTAB. The pressure-Poisson equation, 
which is symmetric and positive (semi) definite, usually requires more work 
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and a more robust preconditioner, but is still solvable via the symmetric 
Gauss-Seidel preconditioned conjugate residual method or related methods. 

Unfortunately, the successful use of preconditioned iterative methods for 
segregated problems has not generally been extended to fully-coupled sys- 
tems. In fact, one can argue that the lack of affordable preconditioned 
iterative methods for fully-coupled three-dimensional problems has forced 
CFD application designers to consider segregated methods even though fully- 
coupled formulations were otherwise considered superior (as discussed in 
Section 3). Although two-dimensional problems can be reliably solved by 
direct methods, and segregated formulations can reliably use iterative meth- 
ods, fully-coupled three-dimensional problems cannot be solved in a reliable, 
cost-effective way. Direct methods are far too expensive, if feasible at all, 
because of memory limitations. Iterative methods have been unreliable. 

However, given the availability of large-memory, low-cost computers, and 
the capability to combine these computers into a single parallel computer, 
we can now begin to consider the solution of much larger three-dimensional 
problems. Using incomplete factorization preconditioners and non-restarted 
GMRES, we are able to reliably solve an increasing number of previously 
infeasible fully-coupled models. 

In the remainder of this section we discuss the details of our incomplete 
factorization and GMRES implementations, emphasizing the important de- 
tails that make our implementations more effective than the classic textbook 
versions of these methods. Throughout this section, we are concerned with 
solving a linear system of equations 

Ax = b (30) 

where A is a square nonsymmetric matrix (e.g. J in Eq. 24), b is a known 
right hand side vector and x is the unknown vector we wish to compute. 

4.1 Iterative Methods 

Unlike the case for symmetric matrices, there is no iterative method for 
nonsymmetric matrices that is simultaneously inexpensive and optimal. In 
fact, the Faber-Manteuffel theorem [22] states that no iterative method can 
both minimize the error and have fixed computational cost per iteration. 
Thus, for fully-coupled systems, we are forced to consider either inexpensive 
non-optimal methods that have a low fixed cost per iteration or optimal 
methods with increasing cost per iteration. 
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1. Given a matrix A and right hand side b, choose an initial guess x0. 

2. Compute r. = b - Axo,,f3 = Ilrollz. 

3. Apply the Arnoldi process to produce an upper Hessenberg matrix g, 
and orthogonal matrix V,+l such that AV, = V,+1f?, (where V, is 
the first m columns of V,+l). 

4. Define the new approximate solution x, = x0 + l&y, where ym = 
argmin,ll/3er - HmyI12, with ei = (l,O,. . . ,O)‘. 

Figure 3: Basic GMRES Algorithm 

Non-optimal methods such as Bi-CGSTAB are attractive to many people 
because they are easy to implement, highly parallel and inexpensive to use, 
even if hundreds of iterations are required. However, our experience shows 
that these methods are usually unreliable for our most difficult problems. 

GMRES, an optimal method if no restarting is performed, is more ex- 
pensive than Bi-CGSTAB, especially if many iterations are required, but is 
far more robust for our difficult problems. Because of its robustness, and the 
increasing speed and memory size of modern computers, we have come to 
rely on non-restarted GMRES as our primary iterative methods. 

4.1.1 Details of GMRES Implementation 

The Generalized Minimum Residual Method (GMRES) is a popular iterative 
technique for finding solutions to nonsymmetric linear systems of equations. 
The basic algorithm is described in Figure 3. One of the important im- 
plementation details of GMRES is how to perform orthogonalization in the 
Arnoldi process. Traditionally a modified Gram-Schmidt (MGS) algorithm 
has been used because it has adequate numerical accuracy and reasonable 
cost. Householder orthogonalization (HO) can be used to improve numerical 
accuracy even more, but it costs about twice as much as MGS. 

Classical Gram-Schmidt (CGS) is attractive in a parallel computing envi- 
ronment because it has better communication complexity compared to MGS, 
but its numerical accuracy is often inadequate due to severe cancellation. 
This problem can be addressed by performing a second orthogonalization 
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step. In our experience, CGS with this double orthogonalization provides 
the best combination of parallel efficiency and numerical accuracy. In all the 
experiments performed below, we use this approach. A detailed description 
of the orthogonalization options is given by Saad [51]. 

4.2 Preconditioners 

The choice of preconditioner for iterative solution of difficult problems re- 
mains a challenge. Major categories of general-purpose preconditioners in- 
clude diagonal scalings, approximate inverses, algebraic multi-level methods 
and incomplete factorizations. In this section we briefly discuss the first three 
categories and then focus on our approach to using incomplete factorizations. 

4.2.1 Diagonal Scalings 

A formal description of diagonal scaling involves defining two diagonal ma- 
trices (or more generally block diagonal matrices) DL and DR, one of which 
could be the identity matrix, and replacing our original linear system 30 with 
the following: 

Ag = 6 (31) 

where A = DilAD&‘, 2 = DRX and ?, = D$b. Note that we need not 
explicitly form A, Z and 6. This is an important point for some classes of 
problems. 

Diagonal scaling is very important for problems with large variation in 
matrix coefficient magnitudes. It should always be considered in combination 
with some other form of preconditioning and can sometimes be sufficient by 
itself. A thorough discussion of choices for DL and DR is beyond the scope 
of this paper. For the test problems presented here, we use row sum scaling 
such that DE is the identity matrix and ( DL)ii = C,“=, ]aii 1 where aij denote 
the matrix coefficients of A. In exact arithmetic, this scaling causes the oo- 
norm of A to be 1. We are experimenting with column and two-sided scaling 
strategies but our results are incomplete at this time. 

4.2.2 Other Preconditioners 

Research in approximate inverse preconditioners is very active [5, 12, 411 and 
is producing increasingly more robust strategies. However, our experience has 
shown that they continue to be less robust than incomplete factorizations. 
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Research in multi-level preconditioners, usually some generalization of clas- 
sical multigrid approaches [60], is receiving renewed interest as part of the 
pursuit for preconditioners that scale well on massively parallel computers 
for unstructured problems. Finally, a new set of techniques [56] that exploits 
the basic structure of the Navier-Stokes equations is of great interest. All of 
these techniques promise to advance solver capabilities in the near future. 

4.2.3 Incomplete Factorization Preconditioners 

One of the most reliable and versatile classes of preconditioners is incomplete 
factorization. Methods in this class compute an incomplete lower/upper 
(ILU) factorization of the matrix A in Equation 30, or the scaled matrix i 
in Equation 31. Although there are still problems we cannot solve, we have 
found this class of methods to be most suitable for the problems presented 
in the paper. 

There are many variations on incomplete factorizations. Two of the most 
common subclasses are pattern-based and threshold-based. A good overview 
of these methods is given by Saad [51]. We focus on two specific types, 
namely a pattern-based block ILU denoted BILU(k) [13, 321 and a variant 
of ILUT [49, 321. The results in this paper are based on using these two 
preconditioners. 

BILU(k) is a patterned based incomplete factorization with which each 
entry in the sparse matrix is a (small) dense matrix. This type of precon- 
ditioning is natural for mesh-based applications where there are multiple 
degrees of freedom per mesh node. The matrix connectivity corresponds to 
mesh node connectivity and the dense matrices are the interactions between 
the degrees of freedom at a mesh node. The level fill parameter k refers to 
the pattern of the BILU factors. Level fill of k = 0 means that the only block 
entries kept are those that correspond to the pattern of the original matrix. 
Level fill of k > 0 is defined recursively to allow the BILU factors to have 
entries that correspond to the terms from level fill k-l and any fill-in that 
comes directly from level k-l terms. 

ILUT is a dual-threshold based preconditioner where factors are com- 
puted row by row, dropping terms that fall below the threshold parameter 
multiplied by the norm of the row, and then keeping (at most) a prescribed 
number of the largest terms in the row. Details of BILU(k) and ILUT pre- 
conditioners can be found in the Aztec User Guide [61]. 
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4.2.4 Diagonal Perturbations 

The matrices generated by our test problems are composed of several different 
types of physics as displayed in Figure 2, and we are simultaneously resolving 
all degrees of freedom. As a result, our matrix structure can have many forms 
depending on the particular problem being solved and physics being modeled. 
One outcome of this is that incomplete factorizations can be difficult to 
compute, even if the original matrix A is well-conditioned. A few sources of 
difficulty are: 

1. Zero diagonal entries. In this case, unless fill-in occurs prior to dividing 
by the zero diagonal, or we perform some type of pivoting, the factor- 
ization will fail or produce unusable factors. In some instances even 
when fill-in does occur, the diagonal value may be too small to produce 
a usable factorization. 

2. Singular principle sub-matrices. In this case, boundary conditions are 
missing or insufficient to determine a nonsingular upper left sub-matrix. 
Thus any attempt to compute a block ILU factorization will fail. 

3. Singularity due to domain partitioning. When executing in parallel 
using additive Schwarz methods, we observe situations where an in- 
complete factorization for the entire domain exists but one or more 
factorizations for the subdomains do not. 

One straightforward technique to address poorly conditioned factors is 
to introduce diagonal, or block diagonal, perturbations. In this situation, 
the incomplete factorization is performed on a matrix that is identical to A 
except that diagonal (or block diagonal) entries are perturbed, usually to 
increase diagonal or block diagonal dominance. This idea was introduced by 
Manteuffel [42] as a means for computing incomplete Cholesky decomposi- 
tions for symmetric positive definite systems and extended to nonsymmetric 
matrices by van der Vorst [62], Saad [50] and Chow [ll]. It is used for block 
entry matrices in a package called BPKIT [13]. 

Since Krylov methods such as GMRES are invariant under scaling, and a 
very large diagonal perturbation essentially makes the off-diagonal elements 
irrelevant, one way to view diagonal perturbation is as establishing a con- 
tinuum between an accurate but poorly conditioned incomplete factorization 
and less accurate but perfectly conditioned Jacobi diagonal scaling. Given 
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this continuum, the strategy is then to choose a minimal perturbation that 
sufficiently stabilizes the factorization. 

4.3 Perturbation Strategies 

As mentioned above, we often have difficulty computing usable incomplete 
factorizations for our problems. The most common source of problems is 
that the factorization may encounter a small or zero pivot, in which case the 
factorization can fail, or even if the factorization succeeds, the factors may 
be so poorly conditioned that use of them in the iterative phase produces 
meaningless results. Before we can fix this problem, we must be able to detect 
it. To this end, we use a simple but effective condition number estimate for 
(LU)-? 

4.3.1 Estimating Preconditioner Condition Numbers 

The condition of a matrix B, called cond,(B), is defined as condp(B) = 
]]B]lp ]]B-i]], in some appropriate norm p. condp(B) gives some indication 
of how many accurate floating point digits can be expected from operations 
involving the matrix and its inverse. A condition number approaching the 
accuracy of a given floating point number system, about 15 decimal digits in 
IEEE double precision, means that any results involving B or B-i may be 
meaningless. 

The oo-norm of a vector y is defined as the maximum of the absolute 
values of the vector entries, and the oo-norm of a matrix C is defined as 

llclloo = mqvllco=1 llcYllco~ A crude lower bound for the cond,(C) is 
IIC-lellm where e = (1, 1,. . . , 1)‘. It is a lower bound because cond,(C) = 
IICII~IIC-lll~ 2 llC-lIIm 2 IC-lelloo. 

For our purposes, we want to estimate cond,(LU), where L and U are 
our incomplete factors. Chow [ll] demonstrates that ]](LU)-ie]], provides 
an effective estimate for cond,(LU). Furthermore, since finding z such that 
LUz = y is a basic kernel for applying the preconditioner, computing this 
estimate of cond,(LU) is performed by setting y = e, calling the solve kernel 
to compute z and then computing ]]z]]~. The condition number estimates 
reported in Section 5 are obtained using this approach. 

Page 29 October 2001 



Preconditioned Solvers for Incompressible Flow 

4.3.2 A priori Diagonal Perturbations 

Given the above method to estimate the conditioning of the incomplete fac- 
tors, if we detect that our factorization is too ill-conditioned we can improve 
the conditioning by perturbing the matrix diagonal and restarting the fac- 
torization using this more diagonally dominant matrix. In order to apply 
perturbation, prior to starting the factorization, we compute a diagonal per- 
turbation of our matrix A in Eq. 30 and perform the factorization on this 
perturbed matrix. The overhead cost of perturbing the diagonal is minimal 
since the first step in computing the incomplete factors is to copy the matrix 
A into the memory space for the incomplete factors. We simply compute the 
perturbed diagonal at this point. The actual perturbation values we use are 
discussed below. 

4.3.3 Dynamic Diagonal Perturbations 

Another approach to stabilizing the factorization is to modify diagonal values 
as the factorization is being computed, making sure the the diagonal pivots 
do not become too small. For scalar diagonal entries, we have not found this 
approach to be useful. Even though we can ensure the diagonal values remain 
above some threshold, in practice this does not prevent the factorization from 
becoming too ill-conditioned. 

However, with block-entry matrices, where the diagonals are dense matri- 
ces, it has been fruitful to consider dynamic perturbations. In this situation, 
as we compute the factorization and prepare to apply the inverse of a block 
diagonal entry, we perform a singular value decomposition (SVD) on the 
block diagonal entry and replace any small singular values with a threshold 
value [13]. We then construct the inverse of the block diagonal entry using 
the modified singular values. 

4.4 Strategies for Managing Preconditioner Condition 
Numbers 

Without any prior knowledge of a problem, the first step to take when com- 
puting a preconditioner is to compute the original factors without any diag- 
onal perturbation. This usually gives the most accurate factorization and, 
if the condition estimate of the factors is not too big, will lead to the best 
convergence. If the condition estimate of the original factors is larger than 
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1. Set the absolute threshold cx = 0.0 and the relative threshold p = 1.0 
(equivalent to no perturbation). 

2. Define perturbed diagonal entries as di = sign( + dip and compute 
the incomplete factors L and U. 

3. Compute condest = II(‘ell, where e = (1, 1, . . . , 1)‘. 

4. If failure (condest > 1015 or convergence is poor), set a = 10V5, p = 1.0. 
Repeat Steps 2 and 3. 

5. If failure, set a = 10h5, p = 1.01. Repeat Steps 2 and 3. 

6. If failure, set Q = 10W2, p = 1.0. Repeat Steps 2 and 3. 

7. If failure, set cy = 10p2, p = 1.01. Repeat Steps 2 and 3. 

8. If still failing, continue alternate increases in the two threshold values. 

Figure 4: Simple a priori Threshold Strategy 

machine precision, say greater than l.Oe15, then it is possible that the factor- 
ization will destroy convergence of the iterative solver. This will be evident if 
the iterative solver starts to diverge, stagnates, or aborts because it detects 
ill-conditioning. In these cases, diagonal perturbations may be effective. If 
the condition estimate of the preconditioner is well below machine precision 
(less than l.Oe13) and one is not achieving convergence, then diagonal per- 
turbation will probably not be useful. Instead, one should try to construct a 
more accurate factorization by increasing fill. 

4.4.1 Strategies for a priori Diagonal Perturbations 

The goal when applying a priori perturbations is to find a close to mini- 
mal perturbation that reduces the condition estimate below machine pre- 
cision (roughly l.Oe16). For the results presented in Section 5 we use the 
strategy outlined in Figure 4. Essentially, we replace the diagonal values 
(di, &, . . . , d,) with di = sign( + dip, i = 1,2, . . . , n, where n is the ma- 
trix dimension and sign(&) returns the sign of the diagonal entry. This has 
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1. Set the absolute threshold Q = 0.0 and the relative threshold p = 0.0 
(equivalent to no perturbation). 

2. For each block row: 

(a) Compute the singular value decomposition of the ith diagonal pivot 
block, Di = UCVT, where C = diag(ai, 02,. . . ,cJ~) is a diagonal 
matrix of the singular values of Di in decreasing order [27], and s 
is the dimension of Di. 

(b) Redefine c such that ok = max(ok, a + p * ok), k = 1,. . . , s. 

(c) Construct 0%:’ = VCwlUT, using the perturbed C. 

(d) Proceed with factorization for ith row. 

3. If failure (coded > 1Ol5 or convergence is poor), set Q = p = lo-i4. 
Repeat Step 2. 

4. If failure, set Q = p = 10V3. Repeat Step 2. 

5. If still failing, continue alternate increases in the two threshold values. 

Figure 5: Simple Dynamic Threshold Strategy 

the effect of forcing the diagonal values to have minimal magnitude of Q and 
to increase each by an amount proportional to p, and still keep the sign of 
the original diagonal entry. 

4.4.2 Strategies for Dynamic Block Diagonal Perturbations 

The same general goal (of a priori perturbations) is valid for dynamic block 
diagonal perturbations. Specifically, we want to choose values of a and p that 
make minimal perturbations, if any, to the block diagonal values. For dy- 
namic perturbations, we have the same Q and p parameters, but the meaning 
of the parameters is slightly different and corresponds to the parameters used 
in BPKIT [13]. For the results presented in Section 5 we use the strategy 
outlined in Figure 5. This definition of Q and p guarantees that the singular 
values of each diagonal pivot block will not be smaller than p and that the 
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2-norm condition number of each block (which is the ratio of cr~/cr~), will not 
be less that a. 

The results in the following Section 5 are based on using BILU(k) and 
ILUT, as described in this section, along with non-restarted GMRES. Al- 
though this is work in progress, it nevertheless illustrates great strides in our 
ability to solve realistic, challenging problems. 

4.4.3 Strategies for Global Reordering 

Poorly-ordered equation systems can inflate poor conditioning. Commensu- 
rately we have found that the reverse Cuthill-McKee (RCM) reordering [26] 
is an inexpensive means to improve the effectiveness of incomplete factoriza- 
tion preconditioners for many problems. As its name implies, it relies on the 
Cuthill-McKee (CM) algorithm [15] by first computing the CM ordering and 
then reversing the order. 

Many matrix reorderings consider the sparse matrix as a graph of vertices 
and edges. Assuming a matrix has symmetric structure (which can be ac- 
counted for if not symmetric), a matrix graph is defined by the equations in 
the matrix, such that there is a vertex for each equation, and an edge exists 
between vertex i and vertex j if there is a nonzero matrix entry aij. 

Given this graph interpretation of a matrix, starting with an arbitrarily 
chosen vertex, CM uses a breadth-first search to identify level sets in the 
matrix graph such that each level set is the collection of as yet undeclared 
graph vertices that are neighbors (share an edge with) vertices in the previous 
level set. Ordering by level set in this fashion has a tendency to move nonzero 
off-diagonal matrix entries near the main diagonal. RCM is an improvement 
over CM in that the reverse ordering tends to reduce required fill-in for an 
exact factorization and therefore tends to minimize the discrepancy between 
an incomplete factorization and the exact factorization. 

We use RCM as a means of improving the initial matrix system as needed. 
As we demonstrate below, the condition number in some applications is 
greatly reduced while in others RCM can lead to condition number infla- 
tion. Reasons for this are discussed where appropriate. 
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5 Test Problems 

Perhaps the largest barrier to routine usage of iterative solvers on indefinite 
matrix systems is the wide variability in solver/preconditioner parameters 
required from problem to problem; this variability arises from a variety of 
sources which we now are just beginning to understand. As discussed in 
Section 2 and in Section 3, poor matrix attributes arising from scaling on a 
block level, variability of scaling across blocks, indefiniteness caused by zero- 
diagonals and diagonally-weak constraints, and mesh/matrix structure and 
equation ordering, etc., can complicate solver selection. The examples here 
demonstrate that in order to successfully model applications, many detailed 
choices in the solver specifications are required for no apparent reason. These 
choices include whether to reorder, whether and how to scale locally/globally, 
how much fill-in of ILU factors is required and how much fill-in is too much, 
whether to control partial fill with a tolerance or a band level, whether to 
pursue block-level preconditioning versus point or global level, how large of 
block is appropriate, what size of subspace is best, etc. Unfortunately it is not 
a simple matter of retaining enough ILU-fill to solve the problem, since the 
higher fill levels add rapidly to memory cost and can further undermine the 
condition of the preconditioning matrix. Moreover, these choices cannot be 
made independently of the nonlinear solution strategy, as issues of exactness 
at the beginning of that process effect the convergence at latter stages (cf. 
Section 5.3). 

Our first two examples focus on the basic Navier-Stokes residual equa- 
tions using the mixed v - p Galerkin finite element method (GFEM). These 
examples are the classic four-to-one contraction and lid-driven-cavity flow 
problems. Solutions to the four-to-one contraction problem illustrate some 
of the dubious aspects of pressure stabilization schemes in confined flows; we 
find that improving those schemes with adjustments to the stabilization pa- 
rameter lead to undermined iterative solver convergence, thereby strengthing 
the need to pursue strategies that employ an LBB element approach. Solu- 
tions to the lid-driven cavity problem are pursued over a range of Reynolds 
number to establish a benchmark for successful and robust application of it- 
erative solvers. We achieve this benchmark by deploying a direct solver. The 
third example complicates matters with an incompressible solid material and 
a moving mesh solved together with the Navier-Stokes system. These fea- 
tures lead to a variable scaling problem which requires specific solver choices. 
Our fourth example will examine a realistic application of incompressible flow 

October 2001 Page 34 



Preconditioned Solvers for Incompressible Flow 

in a flexible die cavity. We will demonstrate with this problem again why the 
highly touted PSPG scheme discussed in Section 3.4 is not the best choice 
if the matrix-conditioning improvements that PSPG provides were not the 
main goal. In our fifth problem we take on a large-scale three-dimensional 
capillary free-surface problem which illustrates some of the issues we en- 
counter with poorly-conditioned distinguishing conditions. We finish with a 
viscoelastic flow problem which produces the most challenging matrix sys- 
tem we have solved to date. There we exemplify how adaptable block size 
and SVD are used to tune the preconditioners to meet the challenge, but not 
without a heavy cost in memory and compute time. 

In all cases we employ Krylov subspace size for GMRES (c.f. Section 4 
) of 100 to 500. We find this “knob” can also have a significant effect, as 
expected, beyond our choice of preconditioners. However, our main focus 
remains the preconditioners, and our ultimate goal to reduce and eventually 
eliminate guesswork. As previously discussed we limit our experiments to 
the ILUT(z) ( x indicating a factor of nonzero fill values beyond the basic 
storage) and BILU(k) preconditioner classes. On top of these we will employ 
preconditioner matrix perturbations following the strategy outline in Figure 4 
and 5, global matrix reordering with RCM, and adaptive block size control 
where necessary to achieve acceptable performance. These tactics are used 
over and above the increase-level-of-fill tactic as expedients to save memory 
cost. We follow the same sequence of solves for each problem so that we 
can compare results at the end. We should point out that it is advantages 
to adjust the residual ratio tolerance, which is the ratio of the L2 norm of 
current matrix residual Ax - b to the starting matrix residual Ax0 - bo, 
especially for early Newton iterations. 

5.1 Navier-Stokes System with Inflow and Outflow Bound- 
ary Conditions 

Our first test problem is designed to illustrate the accuracy of the LBB- 
compliant mixed interpolation velocity pressure formulation and the solu- 
tion degeneracy that can result from improper usage of pressure-stabilized 
schemes (as discussed in Section 3.4). Our first problem addresses incom- 
pressible flow in a three dimensional four-to-one contraction geometry. The 
geometry and computational mesh is shown Figure 6 and results in 37,000 un- 
knowns. Figure 7 shows the computed channel-directed velocity component 
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along the symmetry plane. The three-dimensional case was contrived from 
the base two-dimensional planar case by simply extruding the mesh in the 
z-direction, as indicated in the figure. We use symmetry boundary conditions 
on the front plane, and no-slip/impenetrability conditions on the back plane. 
In this way we recover the two-dimensional solution on the front symmetry 
plane but provide a truly three-dimensional test as a better measure of the 
compute-resource requirements. Here we utilize the baseline case QlPO ele- 
ment type (an LBB element) without pressure stabilization as a benchmark. 
We compare the baseline case with the &l&l stabilized velocity-pressure ap- 
proach, for different constant multipliers on the least-squares term (cf. a in 
Eq. 29). As a second benchmark we show the same velocity profile in the 
two-dimensional test case as computed by the commercial code FIDAP [38], 
which has implemented the same stabilization term. 

Figure 6: Mesh for three-dimensional 4:l contraction flow with bottom and 
side symmetry. 

In both cases FIDAP and our in-house incompressible flow code have been 
verified on this simple test problem, using the LBB compliant QlPO element 
type. Notice in Figure 7 that when Q < lop3 the &l&l element type with 
pressure stabilization yields a fairly accurate solution. This is not the case 
when Q is as high as 0.1. The x-component of the velocity along the centerline 
shows evidence of mass sources and sinks, viz. wiggles, in this case. This 
highly unacceptable solution clearly demonstrates the need for restrictions 
on our choice of the pressure stabilization parameter a. Because the focus of 
this paper is solver efficiency and robustness, we now examine how the choice 
of a affects iterative solver performance. The difference in profiles between 
the FIDAP solution and our code are likely due to the way in which the 
stabilization parameter T is applied. We use a global average element size 
and keep this parameter constant whereas FIDAP uses a local measure. In 
either case, however, the same degradation in the solution quality is evident 
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Figure 7: X-Velocity component along centerline symmetry plane for 4:l 
contraction flow, Re = 10. 

at the same value of Q. 
Table 1 gives the memory requirements, CPU times, and in some cases 

the condition number of the preconditioning factors for three variants of the 
incomplete factorization ILU methods (cf. Section 4 for a complete discussion 
of ILU-preconditioning). We reserve most of our discussion on performance 
and robustness of preconditioning strategies to the remaining test problems, 
but give some preliminary results here to set the stage for that discussion. 
ILUT(0) preconditioning basically fails in all cases except that which has 
a high pressure stabilization factor, viz. Q = 0.1. Clearly we will not be 
able to rely on this preconditioner because it only works when the solution 
continuity constraint is not satisfied. ILUT with a level-of-fill of 2.0 gives 
more reliability to the solver, enabling solutions for Q as low as 10p3, but is 
still inadequate for the general case as the solution quality is less than that 
attainable with the LBB element, at the same level of mesh refinement. It 
should be noted that the memory requirements for two levels of fill in ILUT 
is enormous for a small three-dimensional problem. The condition number 
for the LBB element case of the preconditioner is greater than 102’, thus 
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test because it exhibits useful features and challenges. First, it is a problem 
that involves only Dirichlet boundary data and thereby is not confounded 
by the placement effects of inflow and outflow boundaries. Second, sharp 
corners at which boundary data is not continuous lead to singularities in the 
stress; singularities lead to steep gradients in the solution and non-smooth 
flow, thereby making it more relevant to a wide variety of practical flows. 
Third, the pattern of fluid flow exhibits structure changes and flow features 
that challenge many numerical techniques, e.g. recirculation in the corners 
and bifurcations in flow structure with increasing Reynolds number. Finally, 
because of the absence of inflow and outflow boundaries, there is no natu- 
ral pressure datum, which forces the practitioner to specify such a datum 
somewhere in the cavity. 

Figure 8: Lid-driven cavity computational mesh 

We consider here a box of width L, height L, and length 2L and take 
the dimension L to be unity. Our base mesh contains 13 elements along 
the width and height, and 25 elements along the length. The mesh spacing 
is reduced continuously towards the lid to better resolve the non-smooth 
solution behavior in the corners. We take the viscosity 1-1 and the density 
p as unity. We vary the lid speed U from 10m5 to 1000. It is appropriate 
to define a Reynolds number as Re = y. In the results and discussion to 
follow we will refer solutions parameterized by Reynolds number, which is 
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Figure 9: Pattern of flow for three-dimensional lid-driven cavity problem. 
Re = 10. 

equivalent to the lid speed. 
We have chosen to keep the Krylov subspace size at 200. Previous tests 

show that sizes of around 10 to 20 led to severe degradation in convergence, 
and sizes much greater than 200 seem to offer little benefit in terms of linear 
solver convergence rate, but this depends on the mesh size. Our convergence 
tolerance for the nonlinear Newton iteration loop is taken as lo-‘, and is 
measured as the L2 norm of the Galerkin weighted residual vector. As for 
the iterative solver, we measure the extent of convergence with a residual 
ratio, which is the ratio of the L2 norm of current matrix residual Ax - b 
to the starting matrix residual Ax o - bo. In this test problem we set the 
threshold value to be 10e3. 

Here as in all the examples we examine the performance and computa- 
tional requirements of the following preconditioners: ILUT(l.O), ILUT(x), 
and ILUT(x) with perturbations, BILU(O), BILU(k), and BILU(k) with per- 
turbations. For ILUT we choose x based on the minimum level required for 
successful solution; likewise for BILU, we choose n based on the minimum 
level required for successful solution. In some cases, however, we exceeded 
any practical value of n or x due to increased memory cost, as noted. The 
perturbation thresholding strategy (cf. Figure 4 for ILUT and Figure 5 
for BILU) involves two additional parameters we call absolute and relative 
thresholds. In this first study we will perform each of these tests with and 
without RCM to show the importance of reordering. 

We show results at Re = 10 in Table 2 for QlPO and Q2Ql LBB compli- 
ant velocity-pressure elements. Problem size details are given in the Table. 
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Element 
and DOF 

QlPO 
(no RCM) 
19513 DOF 

QlPO 
@CM) 
19513 DOF 

Q2Ql 
@CM) 
112215 
DOF 

Preconditioners 
ilut(l.O) 1 ilut(3) 1 ilut(1) with bilu(0) 

1 perturbations 1 
unconvereed 1 unconverrred 1 I unconverged 
CN = 8.ielO 
nna=1325137 ( zz+7~~11 / z&kg37 1 cN = 5&ll 

zero pivot zero pivot T 

bilu(1) 

CN = 1.5e04 
nns=1325137 
30 its/1005 

CN = 3.0e4 
nnz=1325137 
30 its/25s 

bilu(1) with 
perturbations 

i 

CN = 2.le04 
nnz=1325137 
16 its/68s 

CN = 2.0e4 
nlXS= 

nnz=23572369 

CN - Condition Number of Preconditioner; k - Fill level for bilu; 
x - Fill level for ilut; its -Average Number of Matrix-solver Iterations. 

nnz - Number of Nonzeros Stored (Preconditioner) 

Table 2: Convergence results for Lid-Driven Cavity problem(m). 

Note that in the Q2Ql case the mesh results in a much higher problem res- 
olution, as we keep the number of elements the same. In all cases we solved 
the steady equations with a zero initial guess. Reported in this and all fol- 
lowing tables as indicated are the condition number of the preconditioner 
matrix (if successfully computed), the number-of-nonzeros stored, the aver- 
age number of iterations per Newton step for the iterative solver solution, 
and the total matrix solution time. Surprisingly and somewhat fortuitously 
we found that a solution was possible with a level-of-fill of 1.0, with ILUT. 
In all cases the level-of-fill increase only added to the memory cost with little 
or no improvement in performance; this behavior is to be expected in light 
of the relatively small condition number. Some interesting behavior regard- 
ing global reordering is noteworthy. With RCM reordering, QlPO elements 
resulted in zero-pivots at all levels of fill; fortunately acceptable behavior 
could be regained by using the threshold parameters. The opposite behav- 
ior was observed for Q2Ql velocity-pressure elements: RCM was required 
to avoid pivot problems in the ILUT scheme. Contrary to the QlPO case, 
thresholding without RCM allowed for acceptable convergence. 
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To measure the iterative solver performance we compare all cases to that 
of a direct solver, in the QlPO case. By “performance” we imply robustness 
and not compute time or memory cost, as that comparison is already under- 
stood. We can state that the results of performing first-order continuation 
with QlPO elements starting from Re = 1 and going in increments of 300 
to 1200 as follows. With a direct solver we were able to continue in steps 
of 300 up to 1200. With the iterative solver choice that seem to perform 
best according to Table 2, viz. ILUT in row 1 together with a residual ratio 
tolerance of 10h7, we observed erratic convergence past Re = 600 and never 
achieved Re = 1200 without reducing the step size to an impractically low 
level. This behavior indicates not only that iterative solvers are fickle, but 
that solution scheme exhibits a lack of robustness. The reason for this can 
be explained with the matrix condition number estimate: the matrix condi- 
tion degrades the further from the solution (viz. the larger the parameter 
step size) and the poorer the initial guess, often dooming the iterative solver 
regardless of the preconditioner. 

These numerical tests on the ubiquitous lid-driven cavity problem illus- 
trate several key issues with respect to our ultimate goal of achieving the 
robustness of a direct solver. For one, we find that fill-reducing orderings 
like that provided with RCM are essential in the Q2Ql case, but greatly 
inflate the condition number in the QlPO case. We suspect the reason is 
that the matrix graph for the QlPO case has a disconnected entry at the 
node center where only pressure degrees of freedom exist(cf. Figure 1)) and 
so reordering proceeds without seeking to keep these matrix entries near the 
diagonal. Fortunately we can repair the detrimental effects of RCM with ma- 
trix perturbation thresholds, as shown in row 2 of Table 2. Notice that the 
condition number of the preconditioner is the indicator, as its value in failed 
cases is extreme, sometimes exceeding 10 . l5 In those cases, thresholding can 
be used to achieve a nearly-manageable matrix system for ILUT or BILU. 
Finally, when compared side-by-side with a direct solver in terms of robust- 
ness, we find that the matrix system conditioning is affected by the size of the 
parameter step, indicating that larger step sizes require more solver accuracy 
to achieve the same performance. In this example we were unable to achieve 
this accuracy with a reasonable amount of computational work and memory 
using iterative solvers. This reconfirms that oftentimes increasing the level of 
fill is not a viable approach since memory limitations are rapidly exceeded. 
This defeats one of the main reasons for deploying iterative solvers to begin 
with; their low memory usage. 
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5.3 Navier-Stokes System with coupled Fluid-Structure 
Interact ion 

The two examples in this section feature fluid-structural interaction (FSI) 
phenomena. The roll metering nip problem we cover first exemplifies some 
difficulties that may arise in practical applications, even though it is relatively 
small and two dimensional. The die-flexure problem covered at the end of 
this section provides a good test for a typical design problem of substantial 
size. 

In this particular roll-nip metering flow problem liquid is entrained be- 
tween two deformable co-rotating rollers (cf. Figure 10). The high metering 
pressures in the liquid due to rapidly converging flow can lead to deformation 
of the incompressible rubber solid. Our calculations employ a Q2PO velocity- 
pressure element in the liquid ALE region and a Q2PO displacement-pressure 
interpolation in the Lagrangian solid regions. Material properties in the solid 
correspond to a standard rubber-covered roll hardness; the liquid is taken to 
be Newtonian with a viscosity of 6 P. The outer diameter of both rolls is 0.14 
m and the linear roll speed of the surfaces is 1 m/s in the stress-free state. 
In total this two-dimensional problem consists of about 6000 unknowns. 

Figure 10: Deformable roll-nip metering flow. Undeformed mesh (top); de- 
formed mesh (middle); pattern of streamlines (bottom) 

Convergence results are shown in Table 3. The first row corresponds to an 
unordered matrix system. Note that the condition number is moderate (order 
lOlo) across the row and hence, as expected, the threshold perturbations to 
the preconditioner do not affect convergence significantly. Quite surprisingly 
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Figure 11: Matrix structure for deformable roll-nip problem 

though, ILUT and BILU preconditioning required a level of fill around four 
for successful problem solution. In fact we were completely unsuccessful 
for all matrix-graph fillin levels below 7.0 for ILUT and at all levels of fill 
for BILU, using the standard solver settings specified in the beginning of 
Section 5; luckily we were able to achieve solutions at lower levels of fill 
by requiring more stringent matrix system convergence on the first Newton 
iteration, viz. reducing the residual ratio tolerance to lo-l5 enabled solutions 
with ILUT and BILU to be obtained with x = 4 and k = 4, respectively. 

Reordering the resulting matrix with RCM, in this case, undermines con- 
vergence ostensibly due to the destruction of the naturally material-based 
ordering arising from assembly. The result of reordering is also depicted in 
matrix graphs in Figure 11. The graphs show the existence of zero-diagonals 
resulting from the incompressibility constraints. In the unordered case one 
can pick up the structural effects of assembly based on material blocks, since 
assembly is done block-by-block. The fluid-structural boundary conditions 
lead to “wings” in the unordered structure as they involve velocity compo- 
nents in equation regions that have strictly displacement-based elastic stress 
balances. Although RCM reordering clearly reduces the bandwidth of the 
problem, we find that global matrix conditioning is worsened (cf. Table 3). 
In the reordered case we were completely unsuccesful with ILUT and had 
to rely on BILU for solution. Noteworthy also is the lack of benefit realized 
from matrix preconditioner perturbations, even with the high initial precon- 
ditioner condition number. 

Overall the results for this problem are somewhat disappointing as such a 
high fill level is usually impractical in three dimensions due to a high memory 
cost, unless parallel processing is used to reduce this cost without undermin- 
ing the effectiveness of the preconditioner. We speculate that some adaptive 
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CN - Condition Number of Preconditioner; nnz - Number of Nonzeros Stored (Preconditioner); 
k - Fill Level for BILU; x - Fill Level for ILUT; its -Average Number of Matrix-solver Iterations. 
Preconditioner 1 ilut(l.O) 1 ilut(x) 1 ilut(n) with 1 bilu(0) bilu(k) 1 bilu(k) with 

perturbations 

no RCM CN = n=4 weakened CN = 
6000 un- 3.e+lO CN=5.le+lO convergence 3.eS16 
knowns nnz=418343 nnz=1547849 nnz=585680 

no conver- 70 its/100 s no conver- 
gence gence 

RCM zero pivot zero pivot no comer- no conver- 
6000 un- gence gence 
knowns fails 

n=6 
1 perturbations 1 
1 n=4 

CN=4.e+10 
nnz=1673532 
7 its/lOs 

A/R = l.e-09 
CN=2.e+10 
nnz=1338697 
300-t 
its/lOOs 

n=4 
CN=2.e+13 
nnz=1338697 
120 its/38 s 

n=4 
A/R = l.e-09 
CN=2.e+10 
nnz=1338697 
300+ 
its/loos 
weak conver- 
gence 

Table 3: Convergence results for Deformable Roller Nip Problem. 

schemes that weigh level-of-fill, material block reordering, and residual ratio 
tolerance will be required for more robust solution. Incidently, direct solvers 
have no trouble with this matrix system. Perhaps another effective approach 
would be to reorder the equations based on material block, which will be 
considered in future work. 

This erratic and somewhat disappointing performance of ILUT and BILU 
indicates the challenges we must surmount to obtain performance and relia- 
bility equivalent to that of a direct solver. Luckily, the condition of the matrix 
systems from large-deformation fluid-structure interaction problems with in- 
compressible fluid and solid materials has been one of the most formidable 
to date. In the next example we simplify matters with regard to the physics 
by considering linear elasticity in the solid region, no incompressibility con- 
straints in the solid, and small deformations. 

The die-flexure problem pictured in Figure 12 is of prime importance to 
the polymer processing and continuous liquid thin film coating industries. 
The goal is to extrude thin liquid films or sheets with as uniform a thickness 
as possible in the cross-die direction. The solid regions depicted in the figure 
make up what is commonly called a slot-die. These dies are usually center- 
fed and consist of a long and generally tapered chamber plenum attached to 
which is a thin narrow slot, both running the length of the die. The plenum 
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is tapered in size to keep the pressure drop across the slot as uniform as 
possible. Determining the taper geometry, slot length and other geometric 
parameters for a variety of liquid rheologies and flow conditions that result in 
a uniform film is often the major objective of die designers. One additional 
complication highlighted by this example is the possibility that high liquid 
pressures may result in the die bowing out across the long span, which can 
greatly undermine film uniformity. 

Our calculations pertain to the die-slot geometry pictured in Figure 12. 
We restrict our calculations to purely-viscous Newtonian or shear-thinning 
liquids. The results shown here are for a Reynolds number Re = 1, based on 
the speed of the liquid at the inflow and the width of the plenum chamber. 
We found no additional complications with respect to the iterative solvers 
resulted from shear thinning or moderately higher Reynolds number flows 
(up to 50). The meshes employed lead to 77000 unknowns for the QlPO 
mesh, and approximately 79000 for the &l&l stabilized case. As with the 
four-to-one contraction example above, we show results for a &l&l PSPG 
case at three different values of ct (cf. Section 3.4). By “flow-only” we 
mean that the calculations were done without the solid die and with no 
fluid-structure interactions. This case alone proves to be quite challenging. 
We then compare the PSPG results with the same flow-only case but with 
a LBB-compliant QlPO velocity-pressure element. Finally we perform the 
complete calculation, including the die-flexure, as the ultimate test. In that 
case, we are hard pressed to find a suitable preconditioner. 

The first row of Table 4 corresponds to the flow-only QlPO case. ILUT(l.0) 
preconditioner condition number has a value of order 1016 and ILUT(2.0) of 
order 1043. In both cases the calculation encountered zero pivots on subse- 
quent iterations and no solution was obtained. Increasing the fill beyond 2.0 
offered no benefit, at least without matrix perturbations. As in the previous 
two examples, reordering with RCM increased the preconditioner condition 
number to a more unmanageable value. Strong convergence was obtained by 
lowering the condition number with our perturbation strategy, and increasing 
the fill level to 2.0. The absolute and relative perturbations did not improve 
convergence at lower fill levels. With five Newton iterations and with an 
average of 162 linear solve iterations per Newton step we obtained a solu- 
tion in about 4100 s CPU on a Sun UltraSparc workstation. Interestingly, 
BILU also resulted in good convergence, even with n = 1, albeit taking a 
substantially longer time due to a higher iteration count. Perturbations with 
BILU seemed to undermine convergence and in fact convergence was never 
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strongly obtained. The performance of ILUT(2.0) was weakened with higher 
absolute and relative perturbations alone. Here the proper combination of 
small perturbations and fill provides the optimum selection, i.e., using per- 
turbations to lower the condition number and increasing the level of fill to 
improve convergence. 

In row 5 of Table 4 we again employ the QlPO element but include the 
entire fluid-structural interaction problem. The number of unknowns in this 
case was approximately 80,000. Memory cost is a substantial issue when 
pursuing problems of this size, and in fact a problem any larger forces us 
to parallel computations, the subject of future work. Clearly to keep the 
unknown count under 100,000 we had to reduce the mesh density for this 
calculation. In this case we find extreme preconditioner condition numbers 
for ILUT( l.O), of order 1O26 and eventually failed pivot strategies at all levels 
of fill. We had some success in lowering the condition number with matrix 
perturbations, achieving a solution at a fill level of 3.0 with an absolute 
perturbation of lo5 and a relative pertubation of 1.01. In a similar fashion 
as with the deformable roller nip problem, we had to lower the residual ratio 
tolerance to lo-l5 on the first iteration to achieve a solution. Fortunately, the 
matrix system from this complete problem was also solvable with BILU(2), 
together with an absolute perturbation and relative perturbations of the 
order of 10p5. However, in this case the convergence was slow, with the 
iterative convergence stagnating close to the solution. Moreover, nearly 8000s 
of matrix solve time was required over five Newton steps, clearly indicating 
the need for parallel computing. 

Finally, in rows two, three, and four we include the results for PSPG &l&l 
elements. Here the performance of the iterative solvers is exceptionally good 
for the a! = low3 case, with solution time much smaller than for any QlPO 
case. However, as CK is reduced to 10p5, the preconditioner condition number 
rises precipitously, reaching 1O33 at cx = 10e5. In fact, we obtained matrix 
solutions in this last case only for perturbations of ILUT(3.0). At this fill 
level the number-of-nonzeros stored led to excessive memory requirements. 
Perhaps the most disconcerting aspect of PSPG approaches for this problem, 
however, come from the quality of the solution. 

Figure 14 shows the profile of x-directed velocity component in the plenum 
and slot regions on a cut along the bottom symmetry plane at mid-die, as 
depicted in Figure 13, for the &l&l element with PSPG at three values of Q 
(cf. Eq. 29). For comparison we also include results for the LBB-compliant 
QlPO element. It is noteworthy that in order to achieve the accuracy of 
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r CN - Condition Number of Preconditioner; nnz - Number of Nonzeros Stored (Preconditioner); 
n - Fill Level; its -Average Number of Matrix-solver Iterations: 
A/R -Absolute and relative thl holds applied preconditioner. 
Preconditioner ilut(l.O) ilut(x) ilut(x) with 1 bilu(0) bilu(k) 

pertuibations 

m 

QlPO 
77,000 un- 
knowns 

&l&l 
79,000 un- 
knowns 
a = 10-s 

&l&l 
79,000 un- 
knowns 
a = 10-4 
&l&l 
79,000 un- 
knowns 
a = 10-s 

QlPO, Whole 
FSI problem 
80,000 un- 
knowns 

CN = 
3.e+16 
nnz=1947453 
zero pivot 

CN = 6.e+5 
nnz=2871184 
40 its/350s 

CN = 10”” 
no conver- 
gence 

CN = 10”” 
no conver- 
gence 

CN = 10’” 
zero pivot 

n=2 
nnz=3836482 
CN=l.e+43 
zero pivot 

n=2 
CN=4.e+6 
lMXZ= 
5684944 
30 its/lOOOs 
n=3 
CN=l.e+8 
nnz=7752196 
72 its/2200s 
n=2 
zero pivot 

zero pivot 

n=l CN = l.e+5 
A/R=10V5/1.C nnz=6060093 
CN=l.e+03 71 its/boos 
97its/630 s 

n=3 CN = 10”” 
A/R=10m5/1.C pivot fails 
CN= 1 .e+05 
83its/2500 s 
n=3 CN = 103’ 
A/R=10m3/1.0 pivot fails 
CN=l .e+03 
nnz=7752196 
200+its/5500 
S 

x=3.0 CN = 10” 
nnz=22481368 zero pivot 
A/R=10-5/1.C1 
CN=&le+05 
190 its/2400s 

n=2 
CN=3.4e+4 
nnz=16129034 
175 its/6000s 

n=2 
CN=6e+5 
nnz=10965882 
65 its/850s 

n=3 
CN=10z3 
fails 

n=2 
pivot fails 

zero pivot 
no conver- 
gence 

nnz=5647613 

1 z; convg 

A/R=10-5/1.C 
CN=2e+l 
nns=5647613 
all fails 
n=4 
A/R=10-5/1.C 
CN=3.e2 
all fails 
no conver- 
gence 
On all at- 
tempts 

n=2 
A/R=10-3/10’-3 
CN=6.e4 
120 its/7800s 

Table 4: Convergence results for die-flexure problem. 

a LBB element, (I! needs to be less than about 10W5. Unfortunately, as we 
observed in Section 3.4 the iterative solvers perform poorly at these values. 
Note that the outflow velocity is the same in all cases, but the pressure- 
stabilized elements are plagued by wiggles in the slot where the pressure 
gradient is large. The detrimental effect of PSPG in this problem can be fixed 
with mesh refinement or by evaluating the higher-order terms of Equation 29, 
both which come with substantial computational costs. 

5.4 Capillary Free Surface Flows 

The example presented in this section has proven to be a considerable chal- 
lenge for methods discussed so far. It typifies some of the problems that 
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boundary conditions can introduce into matrix system. 
Figure 15 depicts the flow geomety under consideration. A Newtonian 

fluid wells up in a thick-walled trough, eventually overflowing the sides. Liq- 
uid films drain down both exterior sides of the trough under gravity, eventu- 
ally detaching to fall freely as liquid sheets. Predicting the position and mo- 
tion of the capillary free surface is challenging; the problem is very nonlinear 
and geometrically complex, as the surface moves and curves in three dimen- 
sions. A very general finite element method based on the work of Sackinger 
et al. [53] (cf. Section 2.1) and extended to three dimensions by Cairncross, 
et al. [45], is employed for this purpose. Details of the technique, togther 
with other three dimensional applications can be found in these references. 

By itself, the moving mesh problem amounts to little more than a Laplace 
problem for the mesh node displacements. However, coupling the shape of 
the free surface to the motion of the mesh has a very detrimental effect on the 
condition of the matrix system. The so-called kinematic constraint for a free 
surface, viz. Eq. 13, enforces the requirement that the free surface be also 
a material surface of the flow. However, in this mesh deformation method 
this constraint appears as a force on the “pseudo-solid” mesh material, not 
a constraint on the fluid momentum equation. Unfortunately, the kinematic 
constraint is only weakly dependent on the displacements of the surface nodes 
and can introduce poor-conditioning into the matrix system. 

All computations presented here use eight-noded hexahedron meshes. A 
stabilized &l&l velocity/pressure formulation with alpha = 0.5 was used for 
all computations. This large value of the stabilization weight proved neces- 
sary for convergence in all cases. In contrast, to cases previously presented 
(cf. four-to-one-contraction flow and die-cavity flow), however, a large value 
could be used without introducing significant mass errors. The free surfaces 
minimize pressure gradients and the viscous forces are significantly larger 
than gravitational. Inertial forces were also insignificant. As a consequence, 
the Laplacian of the velocity field was generally small at most points within 
the flow field and as a result the mass-error introduced by the stabilizing 
term was not great. 

Attempts to use LBB-compliant elements were problematic. The large 
number of unknowns and high-bandwidth associated with the Taylor-Hood 
Q2Ql mixed interpolation elements tax both available computational re- 
sources and the patience of the analyst. Parallel processing would have alle- 
viated these to some degree at the expense of adding scaling issues. In the 
end, it was decided to not consider this element. The QlPO element does not 
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present the same issues. However, as in all of our case studies, this element 
results in very poorly-conditioned matrices-so much so that iterative solu- 
tion of the matrices to the same degree of accuracy as the &l&l element was 
not possible. It was decided to present results only for the stabilized &l&l 
element. 

The illustration in Figure 15 represents a convergent result from the non- 
linear solver. This was chosen as a testbed for the preconditioners by resolv- 
ing the problem with the identical material parameters but changing solver 
parameters. Convergence of the non-linear problem thus occured in a single 
iteration and the iterative solvers were always presented with the same basic 
matrix structure. In all cases shown a Krylov subspace size of 500 was used 
with modified Gram-Schmidt orthogonalization. Scaling of the matrix was 
done by absolute row sums. No more than 500 iterations were permitted to 
achieve a residual ratio tolerance of 10p6. 

A summary of the results for the ILUT preconditioner is presented in 
Table 5. Interestingly, without perturbations to the matrix system, only a 
fill-level of one is effective. For higher levels-of-fill, a zero pivot is the consis- 
tent result. This is true regardless of whether RCM reordering is employed. 
However, it is perhaps misleading to suggest that even the lowest level of fill is 
effective, since the number of iterations required with ILUT(l) is very nearly 
at the upper limit of 500, and the time taken is on the order of one-half hour. 
As before, zero pivots or aborts of the solver always occur for levels-of-fill 
greater than one (with one exception discussed below); although, the pres- 
cence of perturbations does improve the performance of the iterative solvers 
with respect to the same case without perturbations. 

One exception to this result is noteworthy. For ILUT(4.0) with RCM re- 
ordering and perturbation parameters as noted in Table 5 there is a dramatic 
decrease in the condition number to approximately lo4 and a corresponding 
drop in the number of iterations to 45. Unfortunately, the time to solution is 
only slightly better and the memory requirements were roughly four times as 
severe, making it dubious as to whether this represents an improvement. This 
result also points to the unpredictable nature of these solution procedures. 
One cannot deduce for the behavior at one level-of-fill what will happen at 
a different level-of-fill. 

A summary of the results using the BILU preconditioner appear in Ta- 
ble 5. Unlike the ILUT preconditioner, BILU does not halt for fill levels larger 
that one. However, the convergence rates are slow. Without perturbations, 
convergence was not achieved in the requisite 500 iterations, irrespective of 
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5.5 Viscoelastic Flow 

In this example, we consider the flow of an eight-mode Giesekus fluid through 
a four-to-one contraction. The discontinuous Galerkin method is used to dis- 
cretize the stress equation with bilinear discontinuous interpolants (cf. [25]; 
[3]). We use an LBB compliant element for the velocity and pressure (Q2Ql) 
and bilinear continuous interpolant for the velocity gradient. From experi- 
ence, we have found that non-LBB compliant elements, even using pressure 
stabilization, are unsucessful for solving viscoelastic flow problems. This may 
be due to additional constraints that arise in this more complex case where 
the stress equation is another tensor field variable and cannot be eliminated 
as in the Newtonian case. From the standpoint of discretized matrix equa- 
tions, an eight- mode Giesekus model implies eight additional symmetric 
tensor unknowns [46] for each of the four nodes in the element. In addi- 
tion, we have the velocity gradient equation that is a nonsymmetric tensor. 
These additional tensor unknowns create an elemental stiffness matrix with 
a very large bandwidth compared to a Newtonian-flow problem on the same 
mesh. One issue that we have noticed regarding problems with discontinuous 
variables is that they seem considerably harder for the preconditioner/solver 
pairs to solve. In general, they require more memory and higher levels of fill 
to acheive a solution. Ideally our solver would be able to statically condense 
out the discontinuous variables, which would greatly reduce the bandwidth 
of the matrix and make the problem easier to solve. 

The mesh we employed for this classic viscoelastic benchmark problem is 
is a refined version of the surface mesh on the symmetry plane of the three- 
dimensional geometry shown in Figure 6. The mesh is highly refined towards 
the contraction and results in a problem of 23439 unknowns, most of which 
are stress variables. The material properties have been greatly simplified 
for this test problem: each mode has identical viscosity, time constant and 
mobility. The viscosity used is 1 cp, the time constant is 0.002s and the 
mobility is 0.002. As is well known in the viscoelastic literature, the solution 
will become more difficult to acheive as the amount of elasticity of the fluid is 
increased, as denoted by the time constant [Guenette and Fortin, 19951. Since 
our time constant is quite small, we are solving a relatively easy viscoelastic 
problem. 

As in the previous cases we ran the problem with both the ILUT and 
the BILU preconditioners coupled with GMRES solver, with and without 
perturbations and RCM reordering. From Table 6 we can see that for this 
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single material problem RCM is very helpful for the ILUT preconditioner. 
Without RCM, regardless of the level of fill, a zero pivot was encountered 
and the problem could not be solved. Adding the standard perturbation 
as described in Section 4 allowed us to solve the problem in a reasonable 
amount of time (315s) with relatively low memory usage (445mb). Using 
RCM reordering allowed us to solve the problem with the lowest level of fill 
for ILUT, viz. ILUT( 1.0). These settings used about as much CPU time 
and memory as the perturbed method without RCM. Adding an additional 
level of fill almost doubled the number of nonzeros and memory requirements 
while quadrupling the solution time. Interestingly, this formulation required 
only two iterations per Newton step, but an distressingly large solution time, 
i.e. 667s per iteration. It took roughly the same solution time using a direct 
solver. For ILUT(l.O), the perturbation technique did not improve matters 
significantly. 

The BILU preconditioner performed similarly to ILUT, with and with- 
out RCM reordering or perturbations. For BILU(O), the iteration count 
was higher than the ILUT case, but took less CPU time and more memory 
(894mb). Increasing the level of fill almost halved the solution time, while in- 
creasing the memory requirements to almost impossible levels (3.6gb). From 
Table 6 we can conclude that ILUT(l) with RCM reordering works best for 
this problem, giving both reasonable solution times and memory require- 
ments. If reordering is unavailable, it may be necessary to perturbed the 
preconditioner matrix. 

6 Summary and Conclusions 

We have presented a comprehensive historical and current state-of-the-art 
study on the performance of iterative solvers and preconditioners on matrix 
systems arising from fully-coupled finite element formulations of incompress- 
ible flow. More importantly, we have made this assessment in the presence of 
additional complications arising in technologically important problems, e.g. 
complex rheology, fluid-structure interaction, and free and moving bound- 
aries. Our formulation rests on full equation coupling and nonlinear solu- 
tions achieved through Newton’s method with an analytical Jacobian. Fur- 
thermore, we advocate the use of LBB-compliant element interpolations for 
accuracy purposes and make plain in Section 5 the tradeoff of such element 
types with so-called pressure-stabilized elements developed to circumvent the 
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Element 
and DOF 

Q2Ql 
(no RCM) 
23,439 
DOF 

Q2Ql 
@CM) 
23,439 
DOF 

Preconditioners I 
ilut(n) with 1 bilu(0) 1 bilu(x) 
perturbations 1 
x = 1.0 ICN =I n =l 

y=ybations 1 

CN=9.5e+05 I.Oe+06 CN = 2.5e06 
nnz=11168721 nnz=11168721 nnz= 
A/R=l.e- 83 its/209s 15700988 
5/1.01 26 its/123s 
70 its/315s 

CN - Condition Number of Preconditioner; k - Fill level for bilu; 
x - Fill level for ilut; its -Average Number of Matrix-solver Iterations. 

A/R=l.e- 
9/1.0e-9 
CN = l.Oe06 
nnz=11168721 
83 its/209s 

n=O 
A/R=l.e- 
9/1.0e-9 1 CN = l.Oe06 
nnz=11168721 
83 its/209s 

nnz - Number of Nonzeros Stored (Preconditioner) 

Table 6: Convergence results for viscoelastic flow through a four-to-one 
contraction( 

LBB compatibility condition. 

Our approach is unique in that we have pushed it to large, three-dimensional 
problems in search of an iterative solver/preconditioner strategy that can al- 
low production-level robustness. Heretofore all previous works have made 
some compromise due to excessive computational work and memory require- 
ments. To this end, and in order to give our approach perspective, we 
reveiwed in Section 3 every viable alternative within the context of finite 
element methods, including pressure stabilization methods, problem segre- 
gation methods, and penalty methods. We feel this comprehensive review 
helps justify why our approach today has practical merit and can offer many 
advantages, but only due to great strides in hardware performance and mem- 
ory availability over the last few years. 

Focusing on GMRES iterative solvers with ILU-based preconditioning, we 
layed out a strategy in Section 4 that allows succesful matrix solution for all 
but a few cases. Global threshold-based incomplete factorization, viz. ILUT, 
and block-level incomplete factorization BILU, with threshold perturbations 
made this success-rate possible, using the estimated preconditioner condition 
number to help guide the solver parameter choices. In those cases which 
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failed, we have been able to deploy pressure stabilization to a satisfactory 
level to achieve our desired engineering result. Unfortunately we cannot claim 
that the succesful solution is always a very practical one, as several problems 
required excessive ILU fill levels that would be prohibitive on a larger scale, 
cf. viscoelastic flow problems and some fluid-structure interaction problems. 
Although great strides towards our ultimate goal of achieving iterative solver 
robustness that rivals the best of direct solvers, but scales favorably with 
problem size, we admit that our results clearly indicate that much work is 
still needed. 

The conclusions we can draw are as follows: 

l We have successfully solved every problem posed to acceptable accuracy 
using the tactics put forth in Section 4. 

l Work still needs to be focused on tactics that allow reduction of the 
fill level in some problems, especially those involving fluid-structure 
interactions, as the required fill levels will be impractical for larger 
problem sizes. 

l Threshold perturbations can be used effectively to combat problems 
exhibiting very large conditions numbers of the preconditioning fac- 
tors, exceeding approximately 1015. For small to moderate condition 
numbers, level-of-fill is an effective means for improving convergence 
for all but free surface problems. 

l Reordering a matrix for bandwidth minimization using RCM precipi- 
tates condition number growth for multiphysics problems and for prob- 
lems with discontinuous pressure basis functions. Reordering with 
RCM is effective at reducing the condition number and improving con- 
vergence for continuous Taylor-Hood velocity-pressure elements in in- 
compressible flow problems. 

l Variable-block row data structures and BILU preconditioning, although 
more expensive, is a more robust approach than ILUT. 

l Inexactness in the matrix solution process has been proven to improve 
iterative solver effectiveness and efficiency, but a good initial nonlinear 
iteration with an accurate matrix solution is essential for problems 
involving coupled fluid and solid mechanics. 
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l Pressure-stabilization techniques greatly improve the condition num- 
ber of the system and allow for accurate solution to low-Re free surface 
problems. However, for acceptable accuracy on confined flow problems, 
small stabilization factors are required, small enough to require more fill 
and perturbations to the preconditioner. Fortunately, our new precon- 
ditioner selection approach has allowed us to manage the detrimental 
effects of PSPG schemes effectively. 

Clearly, future work will be focused on block incomplete LU factorization 
techniques, whereby the block is reduced in size selectively without under- 
mining convergence. Moreover, parallel architectures with the greatly en- 
hance memory availability is perhaps an acceptable way to manage high fill 
level requirements. Unfortunately this will most likely this will undermine 
the scalability. Also, we must continue to examine ways to improve perfor- 
mance of this class of preconditioners in three specific cases: discontinuous 
variable interpolation on an element level, problems involving free surface 
constraints, and problems involving large bandwidth blocks, as those which 
involve viscoelasticity. 
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Figure 14: Comparison of x-directed velocity component profile for various 
levels of the PSPG CK parameter, and with a LBB-compliant QlPO element 
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Figure 15: Predicted free surface shape of overflow weir flow. 
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